whole sum of the reciprocal Catalan numbers

In this little post I complete the details of the calculation

2+\frac{4\sqrt{3}\pi}{27}=\sum_{n=0}^{\infty}\frac{n+1}{{2n\choose n}}=1+1+\frac{1}{2}+\frac{1}{5}+\frac{1}{14}+\frac{1}{42}+\cdots

for the reciprocals C_n=\frac{1}{n+1}{2n\choose n}, the famous so called Catalan numbers. It seems this is well known but it is scarcely quoted anywhere: Cf1, Cf2

We begin by recalling the relation {C_n}^{-1}=(2n+1)(n+1)\int_0^1t^n(1-t)^n{\rm{d}}t, that is,  in terms of the Beta function. So



=\int_0^1\frac{1+3t - 3t^2}{{(1-t+t^2)}^3}{\rm{d}}t


This was hinted to me, thanks to, by the professor Qiaochu Yuan and I am not ashamed to confess that the calculations were executed in mathematica-v5.  Why? well, the risk of introducing errors is a little-big.


Leave a comment

Filed under math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s