Tag Archives: geometría diferencial de superficies

four geodesics in the band


on the right of this post you can see 4 (approximately) geodesics in the mobius strip, one is transversal to the core curve and the others (three)  begin at that transversal… One almost can see that all geodesics in the surface have curvature but without 3d torsion… would it be a theorem?  

Rendered with Mathematica-6.

1 Comment

Filed under fiber bundle, multilinear algebra, topology

a GPS for a surface to do calculus on it


 

1 Comment

Filed under math

tangent space duality of a surface


let us describe how the euclidean duality is carried to the tangent bundle of a surface.

We know how euclidean duality is: For each euclidean space, \mathbb{R}^n, the coordinated (rectangular)  functions: x^i(p)=p^i are linear, so their derivatives, Jx^i, are equal themselves i.e the gradients obey Jx^i=x^i, they are dubbed dx^i and they satisfy duality:

dx^i(e_k)={\delta^i}_k

Now, if \Phi:\Omega\to\mathbb{R}^3  is a parameterization of the surface, \Sigma\subset\mathbb{R}^3, and f:\Sigma\to\mathbb{R} is a “measure” then, doing calculus in the surface means do calculus to f\circ\Phi. Let g=f\circ\Phi.

Let us name \xi^1,\xi^2,\xi^3 the coordinated (rectangular) functions on \mathbb{R}^3.

So by the chain rule we have: Jg=Jf\cdot J\Phi that is, in terms of gradients:

{\rm grad}(g)={\rm grad}(f)\!\cdot\!J\Phi

or

[\begin{array}{cc}\frac{\partial g}{\partial x^1}&\frac{\partial g}{\partial x^2}\end{array}]=[\begin{array}{ccc}\frac{\partial f}{\partial\xi^1}&\frac{\partial f}{\partial\xi^2}&\frac{\partial f}{\partial\xi^3}\end{array}]\!\cdot\!\left(\begin{array}{cc}\frac{\partial \xi^1}{\partial x^1}&\frac{\partial \xi^1}{\partial x^2}\\\frac{\partial \xi^2}{\partial x^1}&\frac{\partial \xi^2}{\partial x^2}\\\frac{\partial \xi^3}{\partial x^1}&\frac{\partial \xi^3}{\partial x^2}\end{array}\right)  

So for the functions u^i=x^i\circ\Phi^{-1} we get x^i=u^i\circ\Phi and by the same rule just above

dx^i=du^i\!\cdot\!J\Phi

where evaluating at the basis e_1,e_2 of \mathbb{R}^2 give

du^i(J\Phi e_k)=dx^i(e_k)={\delta^i}_k

but since it is known that the J\Phi e_1,J\Phi e_2 generate T_p\Sigma, then both: du^1,du^2 generate T_p\Sigma^*, the co-tangent space at p\in\Sigma,… wanna see a picture?

 

Leave a comment

Filed under cucei math, differential geometry, fiber bundle, multilinear algebra