Tag Archives: tensors

Einstein-Penrose ‘s strong sum convention

the rank one tensors’ basis changes



Filed under math, mathematics, multilinear algebra, word algebra

covariant derivative of covectors

How do you think that the covariant derivative in \mathbb{R}^3 is extended over covector fields defined over a surface \Phi:{\mathbb{R}}^2\hookrightarrow\Sigma\subset{\mathbb{R}}^3?

We use the Riesz Representation’s Lemma, so if

dx^k(\quad)=\langle\partial^k,\quad\rangle=\langle g^{sk}\partial_s,\quad\rangle


\nabla_{\partial_i}dx^k(\quad)=\langle \nabla_{\partial_i}\partial^k,\quad\rangle=\langle -{\Gamma^k}_{is}\partial^s,\quad\rangle

This implies that we have:


This contrast nicely with \nabla_{\partial_i}\partial_k={\Gamma^s}_{ik}\partial_s

For a general w=w_sdx^s, we use the Leibniz’s rule to get




The proof that \nabla_{\partial_i}\partial^k=\nabla_{\partial_i}(g^{sk}\partial_s)=-{\Gamma^k}_{is}\partial^s is very fun!

You gotta remember firmly that the \partial^k=g^{sk}\partial_s form the reciprocal coordinated basis, still tangent vectors but representing (à la Riesz) the coordinated covectors dx^k.

Leave a comment

Filed under differential geometry, multilinear algebra

mathoverflow cucei cimat

I would like to add that the grasping of the fundamental sense for these objects and properties, are implanted around the generalization of calculus: differential forms and its applications…

the phrase was awarded with a Nice-Answer badge, which supports the fight for the differential form formalism… : )


Leave a comment

Filed under math

simu exam comment…

The inversion of a matrix.

For a change of basis in \mathbb{R}^3:




we have as a change-of-basis-matrix:

\left(\begin{array}{ccc}1&1&0\\ 0&2&1\\ 0&0&-1\end{array}\right)

and by solving for:




then we get as an inverse of that matrix:

\left(\begin{array}{ccc}1&-1/2&-1/2\\ 0&1/2&1/2\\ 0&0&-1\end{array}\right)

All that inside a recent exam did at the dept of maths

Leave a comment

Filed under algebra, mathematics, multilinear algebra, what is mathematics

covariant and contravariant

Covariant and Contravariant description of tensors from Spiegel's book

Leave a comment

Filed under differential geometry, multilinear algebra

demostración del lema de representación de Riesz de un covector en un espacio vectorial euclídeo

En un espacio vectorial euclídeo V tenemos una manera fácil de representar la base dual de una base arbitraria en V mismo… ¿quieres ver la demostración? entre las cosas que se manejan en esta demostración están las famosas leyes de subir y bajar los índices de las bases involucradas (la de inicio y su recíproca)  y de los componentes de un mismo vector, en  estas diferentes bases 

¿Quieres ver la demostración?

sigue esta . . . liga

Leave a comment

Filed under algebra, cucei math, multilinear algebra