Tag Archives: set theory

double coset counting formula


the double coset counting formula is a relation inter double cosets HaK, where a\in G and H,K subgroups in G. This is:

\#(HaK)=\frac{|H||K|}{|H\cap aKa^{-1}|}

and

\#(G/K)=\sum_a[H;H\cap aKa^{-1}]

The proof is easy.

One is to be bounded to the study of the natural map H\times K\stackrel{\phi_a}\to HaK. And it uses the second abstraction lemma.

The formula allows you to see the kinds of subgroups of arbitrary H versus K a p-SS of G, p-SS for the set of the p– Sylow subgroups.

Or, you can see that through the action H\times G/K\to G/K via h\cdot aK=haK you can get:

  • {\rm Orb}_H(aK)=\{haK\} which comply the equi-partition
  • HaK=aK\sqcup haK\sqcup...\sqcup h_taK, so \#(HaK)=m|K|, for some m\in \mathbb{N}
  • {\rm St}_H(aK)=H\cap aKa^{-1}

then you can deduce:

|G|=\sum_a\frac{|H||K|}{|H\cap aKa^{-1}|}

Now, let us use those ideas to prove the next statement:

Let G be a finite group, with cardinal |G|=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}, where each q_i are primes with q_1<q_2<...<q_t and n_i positive integers.

Let H be a subgroup of |G| of index [G:H]=q_1.

Then, H is normal.

Proof:

By employing K=H in the double coset partition, one get the decomposition:

G=HeH\sqcup Ha_1H\sqcup...\sqcup Ha_tH

So by the double coset counting formula you arrive to:

|G/H|=1+[H:H\cap a_1Ha_1^{-1}]+\cdots+[H:H\cap a_tHa_t^{-1}]

i.e.

q_1=1+\frac{|H|}{|H\cap a_1Ha_1^{-1}|}+\cdots+\frac{|H|}{|H\cap a_tHa_t^{-1}|}

From this, we get \frac{|H|}{|H\cap a_iHa_i^{-1}|}<q_1.

But |G|=q_1|H| as well |H|=|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}] so

|G|=q_1|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}], i.e.

[H:H\cap a_iHa_i^{-1}] divides |G|

Then [H:H\cap a_iHa_i^{-1}]=1. So |H|=|H\cap a_iHa_i^{-1}| for each a_i.

This implies H=H\cap a_iHa_i^{-1} and so H=a_iHa_i^{-1} for all the posible a_i, hence, H is normal.

QED.

Advertisements

4 Comments

Filed under algebra, categoría, category theory, fiber bundle, group theory, math, math analysis, mathematics, maths, what is math, what is mathematics

función contadora


sigue a contadora para ver los algunos detalles de la biyección {\mathbb{N}}\times{\mathbb{N}}\to{\mathbb{N}} que etiqueta las intersecciones de líneas verticales con horizontales espacidas a distancia uno entre ellas.

Leave a comment

Filed under math

categorizando 1


Considere el esquema algebraico contemporáneo de las categorías, que son leguage para describir el estado un arte matemático clásico o novedoso en términos de objetos y flechas: en

http://stats.grok.se/en/latest/Category_of_sets

nos muestra un cierto nivel de popularidad y / o utilidad del cyber-demandante promedio de hoy.

Un matemático es un profesional, aquel que estudia los sistemas deductivo-axiomáticos, sistemas formales particulares, o en abstracto o en la interelación con otros.

Ejemplos están en:

La geometría (Euclides-Hilbert, Análitica de Descartes, Diferencial de Riemann, Geométrica de Dehn, . . . );

El álgebra (grupos de Galois-Dyck, anillos de polinomios de Hilbert-Atiyah, espacios vectoriales de Hamilto-Grassmann-Cayley, grupos y álgebras de Lie, . . );

El análisis (la formalización del cálculo) de Cantor-Weierstrass-Borel o bien;

Como en las computadoras, las estadísticas, los modelos de la física, la economía, . . .
y todas las  que aspiran, otro resto de ciencias. .  .

Insistimos: La moderna organización de las matemáticas está en términos de Categoría: estructuración del conocimiento de una teoría usando dos partes; Objetos y Aplicaciones-entre-los-objetos.

Como Objetos se usan algún tipo de conjuntos, y que  simbolizaremos con Obj para un objeto genérico en la Categoría.
Y también  Flechas: relaciones f : Obj_1 \to Obj_2,  que son aplicaciones (funciones, mapeos, transformaciones) entre los objetos de la categoría.

Como ejemplos específicos de categorías, tenemos:

  • SET={ Obj=todos los conjuntos & Flech=todos los maps entre los objetos };
  • EV={Obj=todos los espacios vectoriales & Flech=todas las transformaciones lineales entre espacios vectoriales};
  • TOPO={Obj=todos los espacios topológicos & Flech=mapeos continuos entre espcios topológicos}

Superademás: se tienen mapeos entre categorías. Esos se llamarán functor.

hay unos functores naturales, por ejemplo:

EV \to SET

o

TOPO \to SET

y otros “mas complicados”…

Leave a comment

Filed under algebra, categoría, Category, category theory, cucei math, mathematics, what is math

what is the second abstraction lemma in the mother category?


category diagram of set, binary relation and maps

abstraction lemma two

Given a simple map f:S\to T then f can be factored as f=\beta\circ\rho where \rho is the projection S\to S/{\sim} defined as \rho(s)=[s] that is surjective, and \beta:\frac{S}{\sim}\to T defined as \beta([x])=f(x) that is injective

readmore

1 Comment

Filed under algebra, cucei math, math, maths, what is math