# Category Archives: mathematics

## Einstein-Penrose ‘s strong sum convention

the rank one tensors’ basis changes Filed under math, mathematics, multilinear algebra, word algebra

## wedge product example

When bivectors are defined by $\beta^i\wedge\beta^j:=\beta^i\otimes\beta^j-\beta^j\otimes\beta^i$,

so, for two generic covectors $\theta=a\beta^1+b\beta^2+c\beta^3$ and $\phi=d\beta^1+e\beta^2+f\beta^3$,

we have the bivector $\theta\wedge\phi=(bf-ce)\beta^2\wedge\beta^3+(cd-af)\beta^3\wedge\beta^1+(ad-be)\beta^1\wedge\beta^2$.

Otherwise,

Cf. this with the data $\left(\begin{array}{c}a\\b\\c\end{array}\right)$ and $\left(\begin{array}{c}d\\e\\f\end{array}\right)$ to construct the famous $\left(\begin{array}{c}a\\b\\c\end{array}\right)\times\left(\begin{array}{c}d\\e\\f\end{array}\right)=\left(\begin{array}{c}bf-ce\\cd-af\\ad-be\end{array}\right)$

So, nobody should be confused about the uses of the symbol $\wedge$ dans le calcul vectoriel XD

## the rank 3 free group is embeddable in the rank two free group

Let $F=\langle x,y|\ \rangle$ be the rank two free group and $U=\langle\{x^2,y^2,xy\}\rangle$ be a subgroup.
Observe that $xy^{-1}=xy(y^2)^{-1}$, then $xy^{-1}\in U$.

Clearly $F=U\sqcup Ux$, because it is not difficult to convince oneself that $U$ consists on words of even length and $xy^{-1}\in U$ implies $Uy=Ux$.

Technically, that is attending to the Schreier’s recipe, having $\Sigma=\{1,x\}$ as a set of transversals and being $S=\{x,y\}$ the free generators for $F$.

Set $\Sigma S=\{x,\ y,\ x^2,\ xy\}$ and take $\overline{\Sigma S}=\{1,x\}$, then we get $\overline{\Sigma S}^{-1}=\{1,x^{-1}\}$.

So according to Schreier’s language the set $\Sigma S\overline{\Sigma S}^{-1}=\{ gs\overline{gs}^{-1}|g\in\Sigma,s\in S\},$ in our case, is $\{\ x\overline{x}^{-1}=1\ ,\ y\overline{y}^{-1}=yx^{-1}\ , \ x^2\overline{x^2}^{-1}=x^2\ ,\ xy\overline{xy}^{-1}=xy\ \}.$

Hence $\{\ xy^{-1}\ ,\ x^2\ ,\ xy\ \}$ are the free generator for $U$.

Note that this three word are the first three length-two-words in the alphabetical order, start by $1 and continuing  to $x^2 $. . .< yx

## cf. Frobenius forms different companion matrices

Filed under algebra, math, mathematics, what is math, what is mathematics

## double coset counting formula

the double coset counting formula is a relation inter double cosets $HaK$, where $a\in G$ and $H,K$ subgroups in $G$. This is: $\#(HaK)=\frac{|H||K|}{|H\cap aKa^{-1}|}$

and $\#(G/K)=\sum_a[H;H\cap aKa^{-1}]$

The proof is easy.

One is to be bounded to the study of the natural map $H\times K\stackrel{\phi_a}\to HaK$. And it uses the second abstraction lemma.

The formula allows you to see the kinds of subgroups of arbitrary $H$ versus $K$ a $p-SS$ of $G$, $p-SS$ for the set of the $p$– Sylow subgroups.

Or, you can see that through the action $H\times G/K\to G/K$ via $h\cdot aK=haK$ you can get:

• ${\rm Orb}_H(aK)=\{haK\}$ which comply the equi-partition
• $HaK=aK\sqcup haK\sqcup...\sqcup h_taK$, so $\#(HaK)=m|K|$, for some $m\in \mathbb{N}$
• ${\rm St}_H(aK)=H\cap aKa^{-1}$

then you can deduce: $|G|=\sum_a\frac{|H||K|}{|H\cap aKa^{-1}|}$

Now, let us use those ideas to prove the next statement:

Let $G$ be a finite group, with cardinal $|G|=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$, where each $q_i$ are primes with $q_1 and $n_i$ positive integers.

Let $H$ be a subgroup of $|G|$ of index $[G:H]=q_1$.

Then, $H$ is normal.

Proof:

By employing $K=H$ in the double coset partition, one get the decomposition: $G=HeH\sqcup Ha_1H\sqcup...\sqcup Ha_tH$

So by the double coset counting formula you arrive to: $|G/H|=1+[H:H\cap a_1Ha_1^{-1}]+\cdots+[H:H\cap a_tHa_t^{-1}]$

i.e. $q_1=1+\frac{|H|}{|H\cap a_1Ha_1^{-1}|}+\cdots+\frac{|H|}{|H\cap a_tHa_t^{-1}|}$

From this, we get $\frac{|H|}{|H\cap a_iHa_i^{-1}|}.

But $|G|=q_1|H|$ as well $|H|=|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}]$ so $|G|=q_1|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}]$, i.e. $[H:H\cap a_iHa_i^{-1}]$ divides $|G|$

Then $[H:H\cap a_iHa_i^{-1}]=1$. So $|H|=|H\cap a_iHa_i^{-1}|$ for each $a_i$.

This implies $H=H\cap a_iHa_i^{-1}$ and so $H=a_iHa_i^{-1}$ for all the posible $a_i$, hence, $H$ is normal.

QED.

## real elementary multilinear algebra

are the common algebraic-techniques  territory for today vector algebra and differential geometry.

This means that ancient vectorcalculus that turns into differential forms nowadays, is “super-oversimplified” into a mathematical language to phrase some modern geometricalalgebrotopologicalanalitic-maths.

Real, ‘cuz first you gotta get the ideas over the field $\mathbb{R}$.

## función con círculos críticos en el toroide

to see the example à la wiki of a function with circles as a critical sets of a  scalar field in a surface in three dimensional space:  follows…

para ver un ejemplo à la wiki de una función con cercos como uns insiemi o campo escalar en una área del trosième Raum: sigue…

actualización (15.Nov.2011):