Category Archives: low dimensional topology

this studies embeddings inter manifolds

splitting into handlebodies


spleeti

Leave a comment

Filed under 3-manifold, 3-manifolds, fiber bundle, low dimensional topology

short exact sequence and center


Let us prove:

Let 1\to A\stackrel{f}\to B\stackrel{g}\to B/A\to 1 be a short exact sequence, if the center Z(B/A)=1  then Z(B)<A

Proof:  When x\in Z(B) then g(x)\in Z(B/A), so g(x)=1.

Therefore x\in\ker (g)={\rm im}(f)=A

\Box

 

Leave a comment

Filed under 3-manifold, algebra, group theory, word algebra

made in México


maybe, for the presentation \langle a,b,c\mid a^2=1, b^2=1 , c^2=1\rangle, is this the its Cayley’s graph?Nsub3CayleyGcC

1 Comment

Filed under algebra, group theory, low dimensional topology, math, topology, word algebra

puntos críticos de una función suave en el círculo


En esta breve nota demostraremos que cada función f:S^1\to{\mathbb{R}}^1 que tenga un punto crítico aislado debe de tener otro.

Entonces supongamos que existe un punto p en S^1 talque {\rm grad}f(p)=\left[\frac{\partial f}{\partial x}|_p,\frac{\partial f}{\partial y}|_p\right]=\vec{0}, pero si elegimos la parametrización \phi:\ ]0,2\pi[\longrightarrow S^1 dada por t\longmapsto\left(\begin{array}{c}\cos(t)\\ \\ \sin(t)\end{array}\right), entonces tenemos una función g=f\circ\phi para la cual, la regla de la cadena implica que g'=f'(\phi)\phi' satisface

\frac{d g}{dt}|_{t_0}=\left[\frac{\partial f}{\partial x}|_p,\frac{\partial f}{\partial y}|_p\right]\left(\begin{array}{c}-\sin\\ \\ \cos\end{array}\right)_{|_{t_0}}

i.e.

\frac{d g(t_0)}{dt}=-\frac{\partial f(p)}{\partial x}\sin(t_0)+\frac{\partial f(p)}{\partial y}\cos(t_0)

entonces si {\rm grad}f(p)=\vec{0} tendremos \frac{d g(t_0)}{dt}=0, en otras palabras g tiene puntos críticos en t_0 y en t_0+2\pi.

Pero además g(t_0)=f\circ\phi(t_0)=f(p) tanto como

g(t_0+2\pi)=f\circ\phi(t_0+2\pi)=f\circ\phi(t_0)=f(p)

es decir g(t_0)=g(t_0+2\pi) y entonces –por el teorema de Rolle– existe t_1 en el intervalo abierto ]t_0,t_0+2\pi[ talque \frac{d g(t_1)}{dt}=0.

Pero si nos restringimos a S^1\setminus\{p\} entonces f=g\circ\phi^{-1},
y así (también por la regla de la cadena) tenemos {\rm grad}f=\frac{dg}{dt}\ {\rm grad}\ \phi^{-1} i.e.

\left[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right]=\frac{dg}{dt}\left[\frac{\partial\phi^{-1}}{\partial x},\frac{\partial\phi^{-1}}{\partial y}\right]

que evaluando en t_1 implica

\frac{\partial f(q)}{\partial x}=\frac{dg(t_1)}{dt}\frac{\partial\phi^{-1}(q)}{\partial x}=0

tanto como

\frac{\partial f(q)}{\partial y}=\frac{dg(t_1)}{dt}\frac{\partial\phi^{-1}(q)}{\partial y}=0

por lo tanto {\rm grad}f(q)=\vec{0}, donde q\neq p \Box

critical points of functions on the circle

Leave a comment

Filed under calculus on manifolds, low dimensional topology, math, math analysis

reflector circle at a punctured torus


Sea T_o un toro 2-dimensional donde hemos removido un disco cerrado,
sea S=T_o\cup_{\partial}\bar{A} donde \bar{A} es aro S^1\times I con S^1\times 0 es la frontera
de una “vecindad” de una curva cerrada simple reflectora, y S^1\times 1 como la curva reflectora. Tal “aro reflector”, \bar{A} tiene como^ orbifold – grupo fundamental a \pi_1(\bar{A})=\Bbb{Z}\times{\Bbb{Z}}_2. Entonces el producto amalgamado es:

reflector circle

reflector circle

Esto es divertido por que es bien sabido que la superficie cerrada de género tres no orientable,  N_3 tiene presentación parecida a esta última.

Observemos que las respectivas abelianizaciones son \mathbb{Z}^2+\mathbb{Z}_2

Entonces es ¿cierto o no qué el concepto de curva reflectora dado por P.Scott no sea el mismo que el de curva reflectora en una superficie no orientable?

Recuerde que, poner una curva reflectora a una superficie orientable es para hacer una superficie no orientable de tipo T\#\cdots\#T\#{\Bbb{R}}P^2 de género impar, donde T es el toro 2D.

^ footnote{Ref[P. Scott en 424p. “The Geometries of 3-Manifolds“, 1983]}

Leave a comment

Filed under algebra, cucei math, group theory, low dimensional topology, topology

situation at some 3D-space


situation at some 3D-space

that is, a curve C,…

Leave a comment

Filed under 3-manifold, 3-manifolds, calculus on manifolds, differential geometry, fiber bundle, geometry, low dimensional topology, math, multilinear algebra, topology

umbrella auf Whitney


These are three level surfaces of the function f(x,y,z)=xy^2+z^2

they are at levels 1,0,-1.

This means that the orange points p on the surface \Sigma in the left graphic, that is, p\in\Sigma=f^{-1}(1) or f(p)=1.

Leave a comment

Filed under 3-manifold, calculus on manifolds, differential geometry, geometry, topology