Category Archives: topology

this studies abstractions from geometry, algebra and analysis

splitting into handlebodies


Leave a comment

Filed under 3-manifold, 3-manifolds, fiber bundle, low dimensional topology

short exact sequence and center

Let us prove:

Let 1\to A\stackrel{f}\to B\stackrel{g}\to B/A\to 1 be a short exact sequence, if the center Z(B/A)=1  then Z(B)<A

Proof:  When x\in Z(B) then g(x)\in Z(B/A), so g(x)=1.

Therefore x\in\ker (g)={\rm im}(f)=A



Leave a comment

Filed under 3-manifold, algebra, group theory, word algebra

made in México

maybe, for the presentation \langle a,b,c\mid a^2=1, b^2=1 , c^2=1\rangle, is this the its Cayley’s graph?Nsub3CayleyGcC

1 Comment

Filed under algebra, group theory, low dimensional topology, math, topology, word algebra

double coset counting formula

the double coset counting formula is a relation inter double cosets HaK, where a\in G and H,K subgroups in G. This is:

\#(HaK)=\frac{|H||K|}{|H\cap aKa^{-1}|}


\#(G/K)=\sum_a[H;H\cap aKa^{-1}]

The proof is easy.

One is to be bounded to the study of the natural map H\times K\stackrel{\phi_a}\to HaK. And it uses the second abstraction lemma.

The formula allows you to see the kinds of subgroups of arbitrary H versus K a p-SS of G, p-SS for the set of the p– Sylow subgroups.

Or, you can see that through the action H\times G/K\to G/K via h\cdot aK=haK you can get:

  • {\rm Orb}_H(aK)=\{haK\} which comply the equi-partition
  • HaK=aK\sqcup haK\sqcup...\sqcup h_taK, so \#(HaK)=m|K|, for some m\in \mathbb{N}
  • {\rm St}_H(aK)=H\cap aKa^{-1}

then you can deduce:

|G|=\sum_a\frac{|H||K|}{|H\cap aKa^{-1}|}

Now, let us use those ideas to prove the next statement:

Let G be a finite group, with cardinal |G|=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}, where each q_i are primes with q_1<q_2<...<q_t and n_i positive integers.

Let H be a subgroup of |G| of index [G:H]=q_1.

Then, H is normal.


By employing K=H in the double coset partition, one get the decomposition:

G=HeH\sqcup Ha_1H\sqcup...\sqcup Ha_tH

So by the double coset counting formula you arrive to:

|G/H|=1+[H:H\cap a_1Ha_1^{-1}]+\cdots+[H:H\cap a_tHa_t^{-1}]


q_1=1+\frac{|H|}{|H\cap a_1Ha_1^{-1}|}+\cdots+\frac{|H|}{|H\cap a_tHa_t^{-1}|}

From this, we get \frac{|H|}{|H\cap a_iHa_i^{-1}|}<q_1.

But |G|=q_1|H| as well |H|=|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}] so

|G|=q_1|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}], i.e.

[H:H\cap a_iHa_i^{-1}] divides |G|

Then [H:H\cap a_iHa_i^{-1}]=1. So |H|=|H\cap a_iHa_i^{-1}| for each a_i.

This implies H=H\cap a_iHa_i^{-1} and so H=a_iHa_i^{-1} for all the posible a_i, hence, H is normal.



Filed under algebra, categoría, category theory, fiber bundle, group theory, math, math analysis, mathematics, maths, what is math, what is mathematics

las básicas

estas son las matemáticas antes llamadas “puras”


o no? :D

Leave a comment

Filed under math, topology, what is mathematics

puntos críticos de una función suave en el círculo

En esta breve nota demostraremos que cada función f:S^1\to{\mathbb{R}}^1 que tenga un punto crítico aislado debe de tener otro.

Entonces supongamos que existe un punto p en S^1 talque {\rm grad}f(p)=\left[\frac{\partial f}{\partial x}|_p,\frac{\partial f}{\partial y}|_p\right]=\vec{0}, pero si elegimos la parametrización \phi:\ ]0,2\pi[\longrightarrow S^1 dada por t\longmapsto\left(\begin{array}{c}\cos(t)\\ \\ \sin(t)\end{array}\right), entonces tenemos una función g=f\circ\phi para la cual, la regla de la cadena implica que g'=f'(\phi)\phi' satisface

\frac{d g}{dt}|_{t_0}=\left[\frac{\partial f}{\partial x}|_p,\frac{\partial f}{\partial y}|_p\right]\left(\begin{array}{c}-\sin\\ \\ \cos\end{array}\right)_{|_{t_0}}


\frac{d g(t_0)}{dt}=-\frac{\partial f(p)}{\partial x}\sin(t_0)+\frac{\partial f(p)}{\partial y}\cos(t_0)

entonces si {\rm grad}f(p)=\vec{0} tendremos \frac{d g(t_0)}{dt}=0, en otras palabras g tiene puntos críticos en t_0 y en t_0+2\pi.

Pero además g(t_0)=f\circ\phi(t_0)=f(p) tanto como


es decir g(t_0)=g(t_0+2\pi) y entonces –por el teorema de Rolle– existe t_1 en el intervalo abierto ]t_0,t_0+2\pi[ talque \frac{d g(t_1)}{dt}=0.

Pero si nos restringimos a S^1\setminus\{p\} entonces f=g\circ\phi^{-1},
y así (también por la regla de la cadena) tenemos {\rm grad}f=\frac{dg}{dt}\ {\rm grad}\ \phi^{-1} i.e.

\left[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right]=\frac{dg}{dt}\left[\frac{\partial\phi^{-1}}{\partial x},\frac{\partial\phi^{-1}}{\partial y}\right]

que evaluando en t_1 implica

\frac{\partial f(q)}{\partial x}=\frac{dg(t_1)}{dt}\frac{\partial\phi^{-1}(q)}{\partial x}=0

tanto como

\frac{\partial f(q)}{\partial y}=\frac{dg(t_1)}{dt}\frac{\partial\phi^{-1}(q)}{\partial y}=0

por lo tanto {\rm grad}f(q)=\vec{0}, donde q\neq p \Box

critical points of functions on the circle

Leave a comment

Filed under calculus on manifolds, low dimensional topology, math, math analysis

Levi-Civita tensor

to see


since we are requiring “canonical” duality, i.e.  covectors, \varepsilon^k:V\to R, do


one uses

\varepsilon^i\!\wedge\!\varepsilon^j\!\wedge\!\varepsilon^k\!\wedge\!\varepsilon^l\!=\!\!\sum_{\sigma\in S_4}\!(\!-1\!)^{\sigma}\!\varepsilon^{\sigma(i)}\!\otimes\!\varepsilon^{\sigma(j)}\!\otimes\!\varepsilon^{\sigma(k)}\!\otimes\!\varepsilon^{\sigma(l)}


Filed under differential geometry, fiber bundle, geometry, multilinear algebra