Category Archives: maths

let’s talk about, focused on algebra, math analysis, geometry, equation and topology

splitting into handlebodies


spleeti

Advertisements

Leave a comment

Filed under 3-manifold, 3-manifolds, fiber bundle, low dimensional topology

short exact sequence and center


Let us prove:

Let 1\to A\stackrel{f}\to B\stackrel{g}\to B/A\to 1 be a short exact sequence, if the center Z(B/A)=1  then Z(B)<A

Proof:  When x\in Z(B) then g(x)\in Z(B/A), so g(x)=1.

Therefore x\in\ker (g)={\rm im}(f)=A

\Box

 

Leave a comment

Filed under 3-manifold, algebra, group theory, word algebra

made in México


maybe, for the presentation \langle a,b,c\mid a^2=1, b^2=1 , c^2=1\rangle, is this the its Cayley’s graph?Nsub3CayleyGcC

1 Comment

Filed under algebra, group theory, low dimensional topology, math, topology, word algebra

transversal rewriting solution by semidirect product of certain coset maps


schreierx03este proceso se generaliza

transversalsandCM

 

2 Comments

2014/08/21 · 13:48

permutational wreath product


Having an action G\times R\to R between two groups means a map (g,r)\mapsto ^g\!r that comply

  • {^1}r=r
  • ^{xy}r=\ ^x(^yr)
  • ^x(rs)=\ ^xr ^xs

Then one can assemble a new operation on R\times G to construct the semidirect product R\rtimes G. The group obtained is by operating

(r,g)(s,h)=(r\ {^h}s,g\ h).

Let \Sigma be a set and A^{\Sigma} the set of all maps \Sigma\to A. If we have an action \Sigma\times G\to\Sigma then, we also can give action G\times A^{\Sigma}\to A^{\Sigma} via

gf(x)=f(xg)

Then we define

A\wr_{\Sigma}G=A^{\Sigma}\rtimes G

the so called permutational wreath product.

This ultra-algebraic construction allow to give a proof  of two pillars theorems in group theory: Nielsen – Schreier and Kurosh.

The proof becomes functorial due the properties of this wreath product.

The following diagram is to be exploited

Ribes - Steinberg 2008

Ribes – Steinberg 2008

Leave a comment

Filed under algebra, free group, group theory, math, maths, what is math

double coset counting formula


the double coset counting formula is a relation inter double cosets HaK, where a\in G and H,K subgroups in G. This is:

\#(HaK)=\frac{|H||K|}{|H\cap aKa^{-1}|}

and

\#(G/K)=\sum_a[H;H\cap aKa^{-1}]

The proof is easy.

One is to be bounded to the study of the natural map H\times K\stackrel{\phi_a}\to HaK. And it uses the second abstraction lemma.

The formula allows you to see the kinds of subgroups of arbitrary H versus K a p-SS of G, p-SS for the set of the p– Sylow subgroups.

Or, you can see that through the action H\times G/K\to G/K via h\cdot aK=haK you can get:

  • {\rm Orb}_H(aK)=\{haK\} which comply the equi-partition
  • HaK=aK\sqcup haK\sqcup...\sqcup h_taK, so \#(HaK)=m|K|, for some m\in \mathbb{N}
  • {\rm St}_H(aK)=H\cap aKa^{-1}

then you can deduce:

|G|=\sum_a\frac{|H||K|}{|H\cap aKa^{-1}|}

Now, let us use those ideas to prove the next statement:

Let G be a finite group, with cardinal |G|=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}, where each q_i are primes with q_1<q_2<...<q_t and n_i positive integers.

Let H be a subgroup of |G| of index [G:H]=q_1.

Then, H is normal.

Proof:

By employing K=H in the double coset partition, one get the decomposition:

G=HeH\sqcup Ha_1H\sqcup...\sqcup Ha_tH

So by the double coset counting formula you arrive to:

|G/H|=1+[H:H\cap a_1Ha_1^{-1}]+\cdots+[H:H\cap a_tHa_t^{-1}]

i.e.

q_1=1+\frac{|H|}{|H\cap a_1Ha_1^{-1}|}+\cdots+\frac{|H|}{|H\cap a_tHa_t^{-1}|}

From this, we get \frac{|H|}{|H\cap a_iHa_i^{-1}|}<q_1.

But |G|=q_1|H| as well |H|=|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}] so

|G|=q_1|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}], i.e.

[H:H\cap a_iHa_i^{-1}] divides |G|

Then [H:H\cap a_iHa_i^{-1}]=1. So |H|=|H\cap a_iHa_i^{-1}| for each a_i.

This implies H=H\cap a_iHa_i^{-1} and so H=a_iHa_i^{-1} for all the posible a_i, hence, H is normal.

QED.

4 Comments

Filed under algebra, categoría, category theory, fiber bundle, group theory, math, math analysis, mathematics, maths, what is math, what is mathematics

las básicas


estas son las matemáticas antes llamadas “puras”

Image

o no? :D

Leave a comment

Filed under math, topology, what is mathematics