Category Archives: category theory

transversal rewriting solution by semidirect product of certain coset maps


schreierx03este proceso se generaliza

transversalsandCM

 

2 Comments

2014/08/21 · 13:48

double coset counting formula


the double coset counting formula is a relation inter double cosets HaK, where a\in G and H,K subgroups in G. This is:

\#(HaK)=\frac{|H||K|}{|H\cap aKa^{-1}|}

and

\#(G/K)=\sum_a[H;H\cap aKa^{-1}]

The proof is easy.

One is to be bounded to the study of the natural map H\times K\stackrel{\phi_a}\to HaK. And it uses the second abstraction lemma.

The formula allows you to see the kinds of subgroups of arbitrary H versus K a p-SS of G, p-SS for the set of the p– Sylow subgroups.

Or, you can see that through the action H\times G/K\to G/K via h\cdot aK=haK you can get:

  • {\rm Orb}_H(aK)=\{haK\} which comply the equi-partition
  • HaK=aK\sqcup haK\sqcup...\sqcup h_taK, so \#(HaK)=m|K|, for some m\in \mathbb{N}
  • {\rm St}_H(aK)=H\cap aKa^{-1}

then you can deduce:

|G|=\sum_a\frac{|H||K|}{|H\cap aKa^{-1}|}

Now, let us use those ideas to prove the next statement:

Let G be a finite group, with cardinal |G|=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}, where each q_i are primes with q_1<q_2<...<q_t and n_i positive integers.

Let H be a subgroup of |G| of index [G:H]=q_1.

Then, H is normal.

Proof:

By employing K=H in the double coset partition, one get the decomposition:

G=HeH\sqcup Ha_1H\sqcup...\sqcup Ha_tH

So by the double coset counting formula you arrive to:

|G/H|=1+[H:H\cap a_1Ha_1^{-1}]+\cdots+[H:H\cap a_tHa_t^{-1}]

i.e.

q_1=1+\frac{|H|}{|H\cap a_1Ha_1^{-1}|}+\cdots+\frac{|H|}{|H\cap a_tHa_t^{-1}|}

From this, we get \frac{|H|}{|H\cap a_iHa_i^{-1}|}<q_1.

But |G|=q_1|H| as well |H|=|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}] so

|G|=q_1|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}], i.e.

[H:H\cap a_iHa_i^{-1}] divides |G|

Then [H:H\cap a_iHa_i^{-1}]=1. So |H|=|H\cap a_iHa_i^{-1}| for each a_i.

This implies H=H\cap a_iHa_i^{-1} and so H=a_iHa_i^{-1} for all the posible a_i, hence, H is normal.

QED.

4 Comments

Filed under algebra, categoría, category theory, fiber bundle, group theory, math, math analysis, mathematics, maths, what is math, what is mathematics

re-engineering some maths


digo re-ingeniería del álgebra lineal al querer enfatizar el carácter categórico monoidal de la categoría de los espacios vectoriales sobre los números \mathbb{R}, y re-ingeniería del cálculo vectorial para remediar el remedio de los ingenieros Gibbs-Heavyside-(Adhémar Jean Claude Barré de) Saint-Venant, y substituir  grad, div, rot y Stokes por el cálculo à-la-Cartan, es decir, usando formas diferenciales.

Leave a comment

Filed under algebra, categoría, category theory, geometry, math analysis, multilinear algebra, what is math

real elementary multilinear algebra


are the common algebraic-techniques  territory for today vector algebra and differential geometry.

This means that ancient vectorcalculus that turns into differential forms nowadays, is “super-oversimplified” into a mathematical language to phrase some modern geometricalalgebrotopologicalanalitic-maths.

Real, ‘cuz first you gotta get the ideas over the field \mathbb{R}.

2 Comments

Filed under algebra, calculus on manifolds, category theory, differential geometry, geometry, math analysis, mathematics, multilinear algebra, topology, what is math, what is mathematics

categorizando 1


Considere el esquema algebraico contemporáneo de las categorías, que son leguage para describir el estado un arte matemático clásico o novedoso en términos de objetos y flechas: en

http://stats.grok.se/en/latest/Category_of_sets

nos muestra un cierto nivel de popularidad y / o utilidad del cyber-demandante promedio de hoy.

Un matemático es un profesional, aquel que estudia los sistemas deductivo-axiomáticos, sistemas formales particulares, o en abstracto o en la interelación con otros.

Ejemplos están en:

La geometría (Euclides-Hilbert, Análitica de Descartes, Diferencial de Riemann, Geométrica de Dehn, . . . );

El álgebra (grupos de Galois-Dyck, anillos de polinomios de Hilbert-Atiyah, espacios vectoriales de Hamilto-Grassmann-Cayley, grupos y álgebras de Lie, . . );

El análisis (la formalización del cálculo) de Cantor-Weierstrass-Borel o bien;

Como en las computadoras, las estadísticas, los modelos de la física, la economía, . . .
y todas las  que aspiran, otro resto de ciencias. .  .

Insistimos: La moderna organización de las matemáticas está en términos de Categoría: estructuración del conocimiento de una teoría usando dos partes; Objetos y Aplicaciones-entre-los-objetos.

Como Objetos se usan algún tipo de conjuntos, y que  simbolizaremos con Obj para un objeto genérico en la Categoría.
Y también  Flechas: relaciones f : Obj_1 \to Obj_2,  que son aplicaciones (funciones, mapeos, transformaciones) entre los objetos de la categoría.

Como ejemplos específicos de categorías, tenemos:

  • SET={ Obj=todos los conjuntos & Flech=todos los maps entre los objetos };
  • EV={Obj=todos los espacios vectoriales & Flech=todas las transformaciones lineales entre espacios vectoriales};
  • TOPO={Obj=todos los espacios topológicos & Flech=mapeos continuos entre espcios topológicos}

Superademás: se tienen mapeos entre categorías. Esos se llamarán functor.

hay unos functores naturales, por ejemplo:

EV \to SET

o

TOPO \to SET

y otros “mas complicados”…

Leave a comment

Filed under algebra, categoría, Category, category theory, cucei math, mathematics, what is math

lema de abstracción


Simplemente el primer paso para bajarle la complejidad a un conjunto excesivamente grande, en la categoría de conjuntos y flechas -la curiosamente denominada categoría madre- es particionar o relacionar. Los morfismos en esta categoría son las flechas atrás mencionadas.  El lema de abstracción está en la entrada de esta teoría , así que desde el punto de vista categórico falta decir algo que relacione 

  • conjuntos S,T, U,...
  • flechas  S\to T, S\to U,...
  • relaciones binarias \sim_s en S o \sim_t en T,…

en el siguiente paso de complejidad categórica. En pasado post enumeré con el dígito dos a la correspondiente situación muy elemental de las cosas que suceden allá en esta teoría fundamental 

Leave a comment

Filed under categoría, Category, category theory, cucei math, math