# Category Archives: categoría

## transversal rewriting solution by semidirect product of certain coset maps

este proceso se generaliza

2 Comments

2014/08/21 · 13:48

## double coset counting formula

the double coset counting formula is a relation inter double cosets $HaK$, where $a\in G$ and $H,K$ subgroups in $G$. This is:

$\#(HaK)=\frac{|H||K|}{|H\cap aKa^{-1}|}$

and

$\#(G/K)=\sum_a[H;H\cap aKa^{-1}]$

The proof is easy.

One is to be bounded to the study of the natural map $H\times K\stackrel{\phi_a}\to HaK$. And it uses the second abstraction lemma.

The formula allows you to see the kinds of subgroups of arbitrary $H$ versus $K$ a $p-SS$ of $G$, $p-SS$ for the set of the $p$– Sylow subgroups.

Or, you can see that through the action $H\times G/K\to G/K$ via $h\cdot aK=haK$ you can get:

• ${\rm Orb}_H(aK)=\{haK\}$ which comply the equi-partition
• $HaK=aK\sqcup haK\sqcup...\sqcup h_taK$, so $\#(HaK)=m|K|$, for some $m\in \mathbb{N}$
• ${\rm St}_H(aK)=H\cap aKa^{-1}$

then you can deduce:

$|G|=\sum_a\frac{|H||K|}{|H\cap aKa^{-1}|}$

Now, let us use those ideas to prove the next statement:

Let $G$ be a finite group, with cardinal $|G|=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$, where each $q_i$ are primes with $q_1 and $n_i$ positive integers.

Let $H$ be a subgroup of $|G|$ of index $[G:H]=q_1$.

Then, $H$ is normal.

Proof:

By employing $K=H$ in the double coset partition, one get the decomposition:

$G=HeH\sqcup Ha_1H\sqcup...\sqcup Ha_tH$

So by the double coset counting formula you arrive to:

$|G/H|=1+[H:H\cap a_1Ha_1^{-1}]+\cdots+[H:H\cap a_tHa_t^{-1}]$

i.e.

$q_1=1+\frac{|H|}{|H\cap a_1Ha_1^{-1}|}+\cdots+\frac{|H|}{|H\cap a_tHa_t^{-1}|}$

From this, we get $\frac{|H|}{|H\cap a_iHa_i^{-1}|}.

But $|G|=q_1|H|$ as well $|H|=|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}]$ so

$|G|=q_1|H\cap a_iHa_i^{-1}|[H:H\cap a_iHa_i^{-1}]$, i.e.

$[H:H\cap a_iHa_i^{-1}]$ divides $|G|$

Then $[H:H\cap a_iHa_i^{-1}]=1$. So $|H|=|H\cap a_iHa_i^{-1}|$ for each $a_i$.

This implies $H=H\cap a_iHa_i^{-1}$ and so $H=a_iHa_i^{-1}$ for all the posible $a_i$, hence, $H$ is normal.

QED.

4 Comments

## multilinear algebra 1, a synoptic view

what is math? let us discuss:

 Baby Abstract Multilinear Algebra Baby Multilinear Algebra  of Inner Product Spaces Reciprocal basis Metric tensor, lenght, area, volumen Bilinear transformations Musical isomorphisms Change of basis Calculus in $\mathbb{R}^n$ Partial derivatives Taylor series Jacobians Chain’s rule Directional derivatives Covariant derivative and Gauss equation Coordinated changes Differential forms with exterior derivatives the $\mathbb{R}^3$ de Rham’s complex Covariant gradient little Stokes’ theorems: Green, Gauss. Algebraic Differential Geometry Parameterizations: curves and surfaces Tangent vectors, tangent space, tangent bundle Curves in $\mathbb{R}^2$ and $\mathbb{R}^3$ and on surfaces in $\mathbb{R}^3$ Surfaces in $\mathbb{R}^3$ all classical surfaces rendered tangent space change of basis vector fields and tensor fields Christoffel’s symbols (connection coefficients) Curvatures (Gaussian, Mean, Principals, Normal and Geodesic) Vector Fields, Covector Fields, Tensor Fields Integration: Gauss-Bonnet, Stokes Baby Manifolds (topological, differential, analytic, anti-analytic, aritmetic,…) Examples: Lie groups and Fiber bundles

## re-engineering some maths

digo re-ingeniería del álgebra lineal al querer enfatizar el carácter categórico monoidal de la categoría de los espacios vectoriales sobre los números $\mathbb{R}$, y re-ingeniería del cálculo vectorial para remediar el remedio de los ingenieros Gibbs-Heavyside-(Adhémar Jean Claude Barré de) Saint-Venant, y substituir  grad, div, rot y Stokes por el cálculo à-la-Cartan, es decir, usando formas diferenciales.

## categorizando 1

Considere el esquema algebraico contemporáneo de las categorías, que son leguage para describir el estado un arte matemático clásico o novedoso en términos de objetos y flechas: en

http://stats.grok.se/en/latest/Category_of_sets

nos muestra un cierto nivel de popularidad y / o utilidad del cyber-demandante promedio de hoy.

Un matemático es un profesional, aquel que estudia los sistemas deductivo-axiomáticos, sistemas formales particulares, o en abstracto o en la interelación con otros.

Ejemplos están en:

La geometría (Euclides-Hilbert, Análitica de Descartes, Diferencial de Riemann, Geométrica de Dehn, . . . );

El álgebra (grupos de Galois-Dyck, anillos de polinomios de Hilbert-Atiyah, espacios vectoriales de Hamilto-Grassmann-Cayley, grupos y álgebras de Lie, . . );

El análisis (la formalización del cálculo) de Cantor-Weierstrass-Borel o bien;

Como en las computadoras, las estadísticas, los modelos de la física, la economía, . . .
y todas las  que aspiran, otro resto de ciencias. .  .

Insistimos: La moderna organización de las matemáticas está en términos de Categoría: estructuración del conocimiento de una teoría usando dos partes; Objetos y Aplicaciones-entre-los-objetos.

Como Objetos se usan algún tipo de conjuntos, y que  simbolizaremos con $Obj$ para un objeto genérico en la Categoría.
Y también  Flechas: relaciones $f : Obj_1 \to Obj_2$,  que son aplicaciones (funciones, mapeos, transformaciones) entre los objetos de la categoría.

Como ejemplos específicos de categorías, tenemos:

• SET={ Obj=todos los conjuntos & Flech=todos los maps entre los objetos };
• EV={Obj=todos los espacios vectoriales & Flech=todas las transformaciones lineales entre espacios vectoriales};
• TOPO={Obj=todos los espacios topológicos & Flech=mapeos continuos entre espcios topológicos}

Superademás: se tienen mapeos entre categorías. Esos se llamarán functor.

hay unos functores naturales, por ejemplo:

EV $\to$ SET

o

TOPO $\to$ SET

y otros “mas complicados”…

## real multilinear algebra

el álgebra multilineal sobre los números reales, $\mathbb{R}$, incluye a las formas diferenciales euclideas, ahí uno estudia la amalgama producida por el álgebra lineal y el cálculo en varias variables. Pero además si uno dispone del lenguage elemental del álgebra tensorial de espacios vectoriales sobre los reales, es decir la categoría ${\rm{Vect}}_{\mathbb{R}}$, entonces uno puede incluir los principios de la geometría diferencial (de curvas y de superficies en $\mathbb{R}^3$) para obtener un curso realmente útil y moderno. En el mero corazón de esta teoría está el complejo de de Rham que permite construir los módulos cohomológicos del álgebra de Grassmann (módulo-$C^{\infty}$), de un conjunto abierto euclídeo.

Otra cosa es la complex multilinear algebra…

## lema de abstracción

Simplemente el primer paso para bajarle la complejidad a un conjunto excesivamente grande, en la categoría de conjuntos y flechas -la curiosamente denominada categoría madre- es particionar o relacionar. Los morfismos en esta categoría son las flechas atrás mencionadas.  El lema de abstracción está en la entrada de esta teoría , así que desde el punto de vista categórico falta decir algo que relacione

• conjuntos $S,T, U,...$
• flechas  $S\to T$, $S\to U,...$
• relaciones binarias $\sim_s$ en $S$ o $\sim_t$ en $T$,…

en el siguiente paso de complejidad categórica. En pasado post enumeré con el dígito dos a la correspondiente situación muy elemental de las cosas que suceden allá en esta teoría fundamental

Leave a comment

Filed under categoría, Category, category theory, cucei math, math