matrices especiales de 2×2, módulo 2 y módulo 3


no es difícil calcular que SL_2(\mathbb{Z}_2) tiene seis elementos y que este grupo es el grupo simétrico S_3=\langle a,b\mid a^2=b^3=e,\ ab^2=ba\rangle.

¿Y que hay acerca de SL_2(\mathbb{Z}_3)? también no es difícil calcular |SL_2(\mathbb{Z}_3)|=24.

¿Es cierto qué SL_2(\mathbb{Z}_3)=S_6?

Leave a comment

Filed under algebra, group theory

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s