wedge complements in finite dimension

in the next counting experiment we are going  to calculate the dimensions of some linear subspaces of the Grassmann algebra of a vector space of dimension n.

We should  be using the intuition granted by \Lambda(\mathbb{R}^n)

The definitions are:

  • C_{dx}=\{\alpha\mid \alpha\wedge dx=0\}
  • M_{dx}={C_{dx}}^{\top}
  • C_{dx\wedge dy}=\{\alpha\mid \alpha\wedge dx\wedge dy=0\}
  • M_{dx\wedge dy}={C_{dx\wedge dy}}^{\top}
  • C_{dx\wedge dy\wedge dz}
  • M_{dx\wedge dy\wedge dz}

doesn’t anybody know the name of the result?…  ‘cuz if it hasn’t, I will claim mine : )

Meanwhile, let me refrain the definition  that says:  


is the C^{\infty}(\Omega)module over the symbols dx^1,dx^2,...,dx^n and over an open set \Omega\subseteq\mathbb{R}^n

stay tune…

1 Comment

Filed under algebra, cucei math, multilinear algebra

One response to “wedge complements in finite dimension

  1. c-qit

    i think that C_{dx} could be called the Ann(dx) in \Lambda(R^n): the annihilator

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s